Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow…
Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.
With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning.
You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.
In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.
With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning.
You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.
In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
Atsauksmes
Nav atsauksmju
0 klienti novērtēja šo produktu.
5
0%
4
0%
3
0%
2
0%
1
0%
Cenas garantija
Bookbook.lv garantē labāko cenu produktiem, kas marķēti ar birku "Cenas garantija". Ja identiska prece citā interneta veikalā maksā lētāk, mēs atmaksāsim cenu starpību. Cenas tiek salīdzinātas ar Bookbook.lv norādītajām produktu cenām. Bookbook.lv apņemas kompensēt cenu starpību pircējam, kurš ir pieteicies "Cenu garantijai", saskaņā ar "Cenu garantijas" noteikumos minētajiem nosacījumiem. Uzzini vairāk
E-grāmata
22,39 €
UZMANĪBU!
Šī grāmata sniedz ACSM formāts. Tas nav piemērots parastajiem lasītājiem, kas atbalsta EPUB vai MOBI e-grāmatu formātus.
Svarīgi! Veicot savienojumu no Apvienotās Karalistes, nav iespējams lejupielādēt e-grāmatas.
Šo grāmatu pārdod privātpersona. Kad būsiet samaksājis par pasūtījumu, grāmatas pārdevējs to nosūtīs 7 dienu laikā . Ja pārdevējs to neizdarīs laikus, jums tiks automātiski atmaksāta nauda.
Šīs grāmatas stāvokli nav vērtējuši Bookbook.lv eksperti, tāpēc par grāmatas kvalitāti atbildīgs ir tikai pārdevējs.
Vai vēlaties pārdot izlasītās grāmatas un pelnīt naudu? Uzzini vairāk šeit
Produkts veiksmīgi pievienots grozam
Lasīt grāmatu:
Jauna grāmata, kas tiek pārdota tieši no Bookbook.lv noliktavas. Grāmatas kvalitāti ir novērtējuši Bookbook.lv eksperti.
Atsauksmes